Analysis of shotgun bisulfite sequencing of cancer samples

Kasper Daniel Hansen <khansen@jhsph.edu> Postdoc with Rafael Irizarry Johns Hopkins Bloomberg School of Public Health Brixen, July 1st, 2011

The basis of phenotypic variation: species

The basis of phenotypic variation: tissues

Epigenetics

Heritable changes in phenotype that are not caused by changes in DNA.

DNA Methylation

In humans: methylation occurs at CpG dinucleotides (28.2M)

CpGs are depleted genomewide.

CpGs tend to cluster together (clusters are termed CpG Islands), these clusters are enriched in or near promoters.

Methylation is associated with "openness" of the DNA. Hypermethylation (high) is associated with gene silencing Hypomethylation (low) is associated with active genes

Methylation is inherited (at least in cell division).

Measuring DNA methylation

PCR does not preserve methylation information. Hybridization is not affected by methylation.

Pretreatment	Analytical step			
	Locus-specific analysis	Gel-based analysis	Array-based analysis	NGS-based analysis
Enzyme digestion	• Hpall-PCR	 Southern blot RLGS MS-AP-PCR AIMS 	 DMH MCAM HELP MethylScope CHARM MMASS 	 Methyl–seq MCA–seq HELP–seq MSCC
Affinity enrichment	• MeDIP-PCR		 MeDIP mDIP mCIP MIRA 	 MeDIP-seq MIRA-seq
Sodium bisulphite	 MethyLight EpiTYPER Pyrosequencing 	 Sanger BS MSP MS-SNuPE COBRA 	BiMPGoldenGateInfinium	 RRBS BC-seq BSPP WGSBS

Illumina methylation arrays: GoldenGate (early 2007, 1.5k CpGs), "27k" (late 2007), "450k" (2011)

Laird, Nature Reviews Genetics (2010)

Bisulfite treatment

The gold standard for measuring DNA methylation at single CpGs is bisulfite treatment followed by Sanger or Pyro sequencing

Bisulfite treatment converts unmethylated Cs to Us (= T)

Can be used genome-wide, but requires the same sequencing effort as whole genome DNA sequencing (= expensive).

Cancer and DNA methylation

DNA methylation in cancer was the first epigenetic modification discovered in cancer (~25 years ago).

Focus (at least lately) in the literature have been on hyper methylation of CpG islands in promoters (tumor supprs) hypo methylation of select repeat elements

although

- global hypomethylation
- hypo methylation of selected genes (typically oncogenes)

have also been described.

Methylation terminology Hyper: goes up, Hypo: goes down DMR: differentially methylated region

CpG Islands shores

Many changes are not in CpG islands, but in regions bordering CpG islands; termed CpG Island shores.

Irizarry et al. Nature Genetics (2009)

Acknowledgements

Increased methylation variation in epigenetic domains across cancer types

Kasper Daniel Hansen^{1,2,10}, Winston Timp^{2–4,10}, Héctor Corrada Bravo^{2,5,10}, Sarven Sabunciyan^{2,6,10}, Benjamin Langmead^{1,2,10}, Oliver G McDonald^{2,7}, Bo Wen^{2,3}, Hao Wu⁸, Yun Liu^{2,3}, Dinh Diep⁹, Eirikur Briem^{2,3}, Kun Zhang⁹, Rafael A Irizarry^{1,2} & Andrew P Feinberg^{2,3}

Nature Genetics, Advance Online

Increased methylation variation across all cancers

Increased variation between normals and cancers, for the *same* regions across *all* 5 cancer types (lung, colon, breast, thyroid and Wilms).

151 regions in 290 samples.

The *same* regions that distingush cancers from normals, distinguishes normal tissue types.

Design

3 colon cancers and their matched normal mucosa

2 adenomas

ABI SOLiD, 50bp reads

~5x coverage on CpGs

We traded coverage for biological replicates.

Mapping

Bisulfite conversion makes the genome into an (appr) 3 letter alphabet, making mapping hard.

We could not use existing tricks for unbiased alignment of bisulfite sequencing data: we wrote a custom aligner, *Merman*.

We can map ~20M CpGs uniquely.

Coverage (for this CpG): 8 3 M's and 5 U's (Unmethylated)

Global levels of methylation

Bisulfite conversion rates estimated using λ phage spike-in to be 99.7-99.8%

One sample, small region ~ 14kb

Smoothing using a binomial model (local likelihood) Adaptive bandwidth (← important)

Small region

Loss of methylation boundaries in cancer

Boundary Shifts (inwards and outwards)

SCHOOL of PUBLIC HEALTH

Novel hypomethylation

Capture bisulfite

~40,000 capture regions, ~400,000 CpGs Red: Average of cancers Blue: Average of normals Green: Difference between cancers and normals

Capture bisulfite

~40,000 capture regions, ~400,000 CpGs Red: Average of cancers Blue: Average of normals Green: Difference between cancers and normals

More capture

Large blocks of hypomethylation

Consistent boundaries

Related to structural conformation of the DNA in the nucleus

What predicts hypomethylation in blocks?

Blocks are enriched for hyper-variables genes

Some of these genes are associated with tumor progression

Quality control: M-bias WGBS

Offset from beginning of read

Quality control: M-bias Capture

Based on this, we trim 15bp. This improves the concordance

Conclusions

- Large blocks of hypomethylation in cancer Global hypomethylation, expression variability LOCKs/LADs
- Structural changes (boundaries) in small regions
 Unified framework for shore/islands hypo/hyper methylation
- With our smoothing technique, 4-5x is good enough Verified by high coverage padlock bs capture
- biological replicates are very useful
- Quality assessment (M-bias plots)

Advantages of biological replicates

The effect of copy number variation (CNV)

