Analysis of shotgun bisulfite sequencing of cancer samples

Kasper Daniel Hansen
khansen@jhsph.edu
Postdoc with Rafael Irizarry
Johns Hopkins Bloomberg School of Public Health Brixen, July 1st, 2011

The basis of phenotypic variation: species

The basis of phenotypic variation: tissues

Epigenetics

The binding of epigenetic factors to histone "tails" alters the extent to which DNA is wrapped around histones and the availability of genes in the DNA

Heritable changes in phenotype that are not caused by changes in DNA.

DNA Methylation

In humans: methylation occurs at CpG dinucleotides (28.2M)

CpGs are depleted genomewide.
CpGs tend to cluster together (clusters are termed CpG Islands), these clusters are enriched in or near promoters.

Methylation is associated with "openness" of the DNA. Hypermethylation (high) is associated with gene silencing Hypomethylation (low) is associated with active genes

Methylation is inherited (at least in cell division).

Measuring DNA methylation

PCR does not preserve methylation information. Hybridization is not affected by methylation.

Pretreatment	Analytical step			
	Locus-specific analysis	Gel-based analysis	Array-based analysis	NGS-based analysis
Enzyme digestion	- Hpall-PCR	- Southern blot - RLGS - MS-AP-PCR - AIMS	- DMH - MCAM - HELP - MethylScope - CHARM - MMASS	- Methyl-seq - MCA-seq - HELP-seq - MSCC
Affinity enrichment	- MeDIP-PCR		- MeDIP - mDIP - mCIP - MIRA	- MeDIP-seq - MIRA-seq
Sodium bisulphite	- MethyLight - EpiTYPER - Pyrosequencing	- Sanger BS - MSP - MS-SNuPE - COBRA	- BiMP - GoldenGate - Infinium	- RRBS - BC-seq - BSPP - WGSBS

Illumina methylation arrays:
GoldenGate (early 2007, 1.5k CpGs), "27k" (late 2007), "450k" (2011)

Bisulfite treatment

The gold standard for measuring DNA methylation at single CpGs is bisulfite treatment followed by Sanger or Pyro sequencing

Bisulfite treatment converts unmethylated Cs to Us (=T)

\downarrow Bisulfite treatment
\qquad

Can be used genome-wide, but requires the same sequencing effort as whole genome DNA sequencing (= expensive).

Cancer and DNA methylation

DNA methylation in cancer was the first epigenetic modification discovered in cancer (~ 25 years ago).

Focus (at least lately) in the literature have been on hyper methylation of CpG islands in promoters (tumor supprs) hypo methylation of select repeat elements
although
global hypomethylation
hypo methylation of selected genes (typically oncogenes)
have also been described.

Methylation terminology
Hyper: goes up, Hypo: goes down
DMR: differentially methylated region

CpG Islands shores

Many changes are not in CpG islands, but in regions bordering CpG islands; termed CpG Island shores.

Acknowledgements

Increased methylation variation in epigenetic domains across cancer types

Kasper Daniel Hansen ${ }^{1,2,10}$, Winston Timp ${ }^{2-4,10}$, Héctor Corrada Bravo ${ }^{2,5,10}$, Sarven Sabunciyan ${ }^{2,6,10}$, Benjamin Langmead ${ }^{1,2,10}$, Oliver G McDonald ${ }^{2,7}$, Bo Wen ${ }^{2,3}$, Hao Wu ${ }^{8}$, Yun Liu ${ }^{2,3}$, Dinh Diep ${ }^{9}$, Eirikur Briem ${ }^{2,3}$, Kun Zhang ${ }^{9}$, Rafael A Irizarry ${ }^{1,2}$ \& Andrew P Feinberg ${ }^{2,3}$

Increased methylation variation across all cancers

Increased variation between normals and cancers, for the same regions across all 5 cancer types (lung, colon, breast, thyroid and Wilms).

151 regions in 290 samples. Wilms

The same regions that distingush cancers from normals, distinguishes normal tissue types.

Design

3 colon cancers and their matched normal mucosa
2 adenomas
ABI SOLiD, 50bp reads
$\sim 5 x$ coverage on CpGs

We traded coverage for biological replicates.

Mapping

Bisulfite conversion makes the genome into an (appr) 3 letter alphabet, making mapping hard.

We could not use existing tricks for unbiased alignment of bisulfite sequencing data: we wrote a custom aligner, Merman.

We can map $\sim 20 \mathrm{M}$ CpGs uniquely.

Coverage (for this CpG): 8
3 M's and 5 U's (Unmethylated)

Global levels of methylation

Bisulfite conversion rates estimated using λ phage spike-in to be 99.7-99.8\%

JOHNS HOPKINS

One sample, small region $\sim 14 \mathrm{~kb}$

Smoothing using a binomial model (local likelihood) Adaptive bandwidth (\longleftarrow important)

Small region

Islands
Genes

$$
\underset{\text { Shore }}{\substack{\uparrow \\ \text { (hypo) }}}
$$

Island
(hyper)

1
Shore
(hypo)

Loss of methylation boundaries in cancer

JOHNS Hopkins
BLOOMBERG
SCHOOL of PUBLLC HEALTH

Boundary Shifts (inwards and outwards)

Islands Genes

Novel hypomethylation

Islands
Genes

Capture bisulfite

~40,000 capture regions, ~400,000 CpGs
Red: Average of cancers
Blue: Average of normals
Green: Difference between cancers and normals

Capture bisulfite

~40,000 capture regions, ~400,000 CpGs
Red: Average of cancers
Blue: Average of normals
Green: Difference between cancers and normals

More capture

Large blocks of hypomethylation

Consistent boundaries

(Some) coincides with LADs, LOCKs and PMDs. Related to structural conformation of the DNA in the nucleus

What predicts hypomethylation in blocks?

Blocks are enriched for hyper-variables genes

Some of these genes are associated with tumor progression

Quality control: M-bias WGBS

Quality control: M-bias Capture

Based on this, we trim 15bp.
This improves the concordance

Conclusions

- Large blocks of hypomethylation in cancer Global hypomethylation, expression variability LOCKs/LADs
- Structural changes (boundaries) in small regions

Unified framework for shore/islands hypo/hyper methylation

- With our smoothing technique, 4-5x is good enough Verified by high coverage padlock bs capture
- biological replicates are very useful
- Quality assessment (M-bias plots)

Advantages of biological replicates

	$p=0.52$
	2
	2^{3}
	3
	1

JOHNS HOPKINS
BLOOMBERG
SCHOOL of PUBLIC HEALTH

The effect of copy number variation (CNV)

